Technical References
[1] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated Optimization: Distributed Machine Learning for On-Device Intelligence,” Oct. 2016, [Online]. Available: http://arxiv.org/abs/1610.02527
[2] Y. Qu, M. P. Uddin, C. Gan, Y. Xiang, L. Gao, and J. Yearwood, “Blockchain-enabled Federated Learning: A Survey,” ACM Comput Surv, vol. 55, no. 4, Nov. 2022, doi: 10.1145/3524104.
[3] W. Issa, N. Moustafa, B. Turnbull, N. Sohrabi, and Z. Tari, “Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey,” ACM Comput Surv, vol. 55, no. 9, Jan. 2023, doi: 10.1145/3560816.
[4] B. Chhetri, S. Gopali, R. Olapojoye, S. Dehbash, and A. S. Namin, “A Survey on Blockchain-Based Federated Learning and Data Privacy,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.17338
[5] Andrew Ronald Short; Helen C. Leligou; Michael Papoutsidakis; Efstathios Theocharis, “Using Blockchain Technologies to Improve Security in Federated Learning Systems,” 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), 2020.
[6] Z. Cai, J. Chen, Y. Fan, Z. Zheng, and K. Li, “Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions,” Mar. 2024, [Online]. Available: http://arxiv.org/abs/2403.00873
[7] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained On-Device Federated Learning,” Aug. 2018, [Online]. Available: http://arxiv.org/abs/1808.03949
[8] Y. Qu et al., “Decentralized privacy using blockchain-enabled federated learning in fog computing,” IEEE Internet Things J, vol. 7, no. 6, pp. 5171–5183, Jun. 2020, doi: 10.1109/JIOT.2020.2977383.
[9] E. Goh, D.-Y. Kim, K. Lee, S. Oh, J.-E. Chae, and D.-Y. Kim, “Blockchain-Enabled Federated Learning: A Reference Architecture Design, Implementation, and Verification,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.10841
[10] C. Ma et al., “When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm,” Sep. 2020, [Online]. Available: http://arxiv.org/abs/2009.09338
[11] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A Blockchain-based Decentralized Federated Learning Framework with Committee Consensus,” Apr. 2020, doi: 10.1109/MNET.011.2000263.
[12] B. Chhetri, S. Gopali, R. Olapojoye, S. Dehbash, and A. S. Namin, “A Survey on Blockchain-Based Federated Learning and Data Privacy,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.17338
[13] J. Heiss, E. Grünewald, N. Haimerl, S. Schulte, and S. Tai, “Advancing Blockchain-based Federated Learning through Verifiable Off-chain Computations,” Jun. 2022, [Online]. Available: http://arxiv.org/abs/2206.11641
[14] Q. Zhang, P. Palacharla, M. Sekiya, J. Suga, and T. Katagiri, “Demo: A Blockchain Based Protocol for Federated Learning.” [Online]. Available: https://arxiv.org/abs/1912.04977
[15] A. Mondal, H. Virk, and D. Gupta, “BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning,” 2022. [Online]. Available: www.aaai.org
[16] M. Abadi et al., “Deep learning with differential privacy,” in Proceedings of the ACM Conference on Computer and Communications Security, Association for Computing Machinery, Oct. 2016, pp. 308–318. doi: 10.1145/2976749.2978318.
[17] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private Federated Learning: A Client Level Perspective,” Dec. 2017, [Online]. Available: http://arxiv.org/abs/1712.07557
[18] X. Yin, Y. Zhu, and J. Hu, “A Comprehensive Survey of Privacy-preserving Federated Learning: A Taxonomy, Review, and Future Directions,” ACM Computing Surveys, vol. 54, no. 6. Association for Computing Machinery, Jul. 01, 2021. doi: 10.1145/3460427.
[19] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-Enhanced Federated Learning against Poisoning Adversaries,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 4574–4588, 2021, doi: 10.1109/TIFS.2021.3108434.
[20] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson, “Scalable Private Learning with PATE,” Feb. 2018, [Online]. Available: http://arxiv.org/abs/1802.08908
[21] H. Zhu, “On the relationship between (secure) multi-party computation and (secure) federated learning,” Aug. 2020, [Online]. Available: http://arxiv.org/abs/2008.02609
[22] K. Bonawitz et al., “Towards Federated Learning at Scale: System Design,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1902.01046
[23] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving machine learning,” in Proceedings of the ACM Conference on Computer and Communications Security, Association for Computing Machinery, Oct. 2017, pp. 1175–1191. doi: 10.1145/3133956.3133982.
[24] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating Sybils in Federated Learning Poisoning,” Aug. 2018, [Online]. Available: http://arxiv.org/abs/1808.04866
[25] P. Blanchard EPFL, E. Mahdi El Mhamdi, R. Guerraoui EPFL, and J. Stainer EPFL, “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.”
[26] M. Xu and X. Li, “FedG2L: a privacy-preserving federated learning scheme base on ‘G2L’ against poisoning attack,” Conn Sci, vol. 35, no. 1, 2023, doi: 10.1080/09540091.2023.2197173.
[27] A. Shamir, “How to Share a Secret.”
[28] H. Zhang, J. Wang, H. Robotics, and B. Research, “Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training.” [Online]. Available: https://github.com/Haichao-Zhang/FeatureScatter.
[29] J. Park and H. Lim, “Privacy-Preserving Federated Learning Using Homomorphic Encryption,” Applied Sciences (Switzerland), vol. 12, no. 2, Jan. 2022, doi: 10.3390/app12020734.
[30] N. Hussien, N. M. Hussien, S. A. Salman, and M. Aljanabi, “Secure Federated Learning with a Homomorphic Encryption Model,” International Journal Papier Advance and Scientific Review, vol. 4, no. 3, pp. 1–7, Nov. 2023, doi: 10.47667/ijpasr.v4i3.235.
[31] P. C. M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and M. Atiquzzaman, “A Trustworthy Privacy Preserving Framework for Machine Learning in Industrial IoT Systems,” IEEE Trans Industr Inform, vol. 16, no. 9, pp. 6092–6102, Sep. 2020, doi: 10.1109/TII.2020.2974555.
[32] M. H. ur Rehman, A. M. Dirir, K. Salah, E. Damiani, and D. Svetinovic, “TrustFed: A Framework for Fair and Trustworthy Cross-Device Federated Learning in IIoT,” IEEE Trans Industr Inform, Dec. 2021, doi: 10.1109/TII.2021.3075706.
[33] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning: Concept and Applications,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1902.04885
[34] S. Hardy et al., “Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption,” Nov. 2017, [Online]. Available: http://arxiv.org/abs/1711.10677
[35] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10. pp. 1345–1359, 2010. doi: 10.1109/TKDE.2009.191.
[36] J. Konečný and P. Richtárik, “Semi-Stochastic Gradient Descent Methods,” Dec. 2013, [Online]. Available: http://arxiv.org/abs/1312.1666
[37] R. Johnson and T. Zhang, “Accelerating Stochastic Gradient Descent using Predictive Variance Reduction.” [Online]. Available: http://leon.bottou.org/projects/sgd
[38] O. Shamir and T. Zhang, “Communication-Efficient Distributed Optimization using an Approximate Newton-type Method.”
[39] C. Xu, Y. Qu, T. H. Luan, P. W. Eklund, Y. Xiang, and L. Gao, “An Efficient and Reliable Asynchronous Federated Learning Scheme for Smart Public Transportation,” Aug. 2022, doi: 10.1109/TVT.2022.3232603.
[40] H. Cai, D. Rueckert, and J. Passerat-Palmbach, “2CP: Decentralized Protocols to Transparently Evaluate Contributivity in Blockchain Federated Learning Environments,” Nov. 2020, [Online]. Available: http://arxiv.org/abs/2011.07516
[41] H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Blaise AgüeraAg and A. Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” 2017.
[42] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous Online Federated Learning for Edge Devices with Non-IID Data,” Nov. 2019, [Online]. Available: http://arxiv.org/abs/1911.02134
[43] Y. Chen, X. Sun, and Y. Jin, “Communication-Efficient Federated Deep Learning with Asynchronous Model Update and Temporally Weighted Aggregation,” Mar. 2019, doi: 10.1109/TNNLS.2019.2953131.
[44] Y. Liu, Y. Qu, C. Xu, Z. Hao, and B. Gu, “Blockchain-enabled asynchronous federated learning in edge computing,” Sensors, vol. 21, no. 10, May 2021, doi: 10.3390/s21103335.
[45] Y. Jiang et al., “Model Pruning Enables Efficient Federated Learning on Edge Devices,” Sep. 2019, [Online]. Available: http://arxiv.org/abs/1909.12326
[46] Z. Zhu, J. Hong, and J. Zhou, “Data-Free Knowledge Distillation for Heterogeneous Federated Learning,” 2021. [Online]. Available: https://github.com/zhuangdizhu/FedGen
[47] P. Theodoropoulos, K. E. Nikolakakis, and D. Kalogerias, “Federated Learning Under Restricted User Availability,” Sep. 2023, [Online]. Available: http://arxiv.org/abs/2309.14176
[48] D.-C. Z. Xin-Chun Li, “FedRS: Federated Learning with Restricted Softmax for Label Distribution Non-IID Data,” Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Aug. 2021.
Last updated